Wood Carvings: Rabbit

Our workshop is littered with dismantled robots, failed contractions, forgotten monsters and lots of little wood cravings. This is an older carving of a rabbit that we found in a dusty corner. Like with many of our creations, we do not have photos of how it was made but typically we first cut a rough shape out using a Japanese saw. Once we got the basic form we used wood carving tools to get the details right. And then lots and lots of sanding.

Carved toy Bunny

The design was minimalistic rabbit inspired by ancient totems. We realized to capture a rabbit all you need is the rabbit’s ears and tail. Carved toy Bunny

A close up of the tail.

Carved toy Bunny

We craved the ears flat because many of our earlier raving ended up with broken ears.

Carved toy Bunny

This was a very rewarding and simple project.

Happy creating!

Castello di Amorosa

Ever wish a medieval castle was just a drive away? In you live in the San Francisco Bay Area, you can visit Castello di Amorosa . It is in Sacramento just two hours away.

Castello di Amorosa: Napa Valley Castle Winery in Calistoga

We sometimes need to break from the workshop and Castello di Amorosa is one of our favorite to refill our creative well.

Castello di Amorosa: Napa Valley Castle Winery in Calistoga Court yard

The attention to detail is astounding and having visited castle in Europe they capture the feel.

Castello di Amorosa: Napa Valley Castle Winery in Calistoga Hall way

Dark and spooky corridors can be found to given you inspiration and chills.Sometimes you can find hidden passageways in it .

Castello di Amorosa: Napa Valley Castle Winery in Calistoga Knight

Beautiful murals and statues are found throughout the castle.There is so much detail to the murals! We love looking at them. Sometimes we might even sketch them to bring inspiration.

Castello di Amorosa: Napa Valley Castle Winery in Calistoga Knight

Here is a suit of armor stand ready for action. In the backround you can see a beautiful mural that shows the nights going into battle.

Castello di Amorosa: Napa Valley Castle Winery in Calistoga Gift shop

Everything has the perfect patina to give it a timeless and well-worn look.The tiles in this image are skillfully decorated with intricate patterns.

Castello di Amorosa: Napa Valley Castle Winery in Calistoga downstairs

Here are some more dimly lit corridors.

Castello di Amorosa: Napa Valley Castle Winery in Calistoga View from the front

Hope you find inspiration!

Wood Sculpture: Cat

This cute little wooden cat was a quick build from some leftover pieces. We wanted a simple toy that would be sturdy and easy to build, but would also look like a cat. All of the wood was harvested from our yard.

Wooden toy cat

For the tail and legs we like to keep the bark on to give it a rustic look. The texture would also look like fur.

Wooden toy cat

The head, tail and legs are attached using wire to make it poseable. To do this, we drill small holes in each on the limbs, and used the wire like a peg. There is no glue in the whole figurine.

Happy Creating!

Maker Fest at Ecole Bilingue in Berkeley

The Hip Monsters team was thrilled to be invited to a Maker Fest last week at Ecole Bilingue in Berkeley, CA. Ecole Bilingue is a preschool to eighth grade French immersion school focused on preparing their students to make a positive impact on the world.

We had a wonderful time and it was amazing to see such talented makers and dedicated students. The event had great food (including handmade boba tea), a fun crowd and an exciting lineup of makers. It was a beautiful day in Berkeley which added to the cheer.

Below are just some of the makers at the fest.

Hip Monster’s Robot Freedom

We were there with Number Three of RobotFreedom fame, who got a chance to test out her new legs. We will have a post in a bit on her leg redesign. Te legs worked well and the batteries lasted long than we anticipated.

We also brought our pneumatics demonstration which is an ideal place to start kids (and adults) on robotics.

 

The Sewing Corner 

There was a great sewing section with helpful makers who quickly got even first time sewers make a tote bag.

Here is a finished toto bag! We have already put it to good use storing cat toys.

Magnification Mayhem vs. Resolution Rumble!

George and Janai Southworth from the San Francisco Microscopical Society had a fantastic demonstration of microbiology. They showed how different filters and lightning impacted what could be viewed through the microscope.  Below is a petri dish of bacteria waiting to reveal its secrets.

 

Solar Racing Car

Members of the UC Berkeley CalSol Solar Racing Car were there giving us the inside scoop on their upcoming race in Nashville, TN. Every few years the car is completely redesigned and rebuilt using the most up to date technology. 

 

3-D Print Making

There was 3D printing space with a great collection of designs and examples. And all the designs were coded by kids!

And ere is out favorite design, a 3D printed pink bunny.

Bike Powered Smoothies

The bike powered smoothie machines were steampunk inspired pieces of art. They were designed and made by the talented students at Ecole Bilingue. They also are a great way to make sure you earn those calories in the smoothie. Every household should have one of these!

 

The designs are modified stationary bike with blender connected to the front wheel.

Here are the bikes in action making a smoothie.

 

Painting Robot

They even had a robot making art! It was fun watching the robot as it dutifully created its next masterpiece.

Here is a view of the business end of the painter bot.

 

Space Wars

And last but not least, a RaspberryPi powered game console designed a built by one of the students. The compact design had custom made controllers that allowed for two person games.

The stand was a clever design using a cardboard box as a case neatly cut so it looked.

 

 

Find your inspiration!

Girl Genius Dingbot Robot Part One

We decided to finally make an attempt to build a Dingbot robot based on the girl genius web comics.

Please note, this material is provided for informational purposes only and is not a guide on how to create the designs. Please take a look at our disclaimer.

Our design is based on the first BingBot, a small robot similar to a pocket watch. Below is a image of a GirlGeniusOnline Dingbat in action.

As the series continue she create a variety of different BingBots and even Wingbots.

After we have settled on a design on paper we like laying out all the components on our workbench and start visualizing how the pieces fit together and to make sure we have all the parts we need.

We made the design as small as possible but still fit all the electronics including a RaspberryPi Nano. We wanted the design to be a fully functioning computer. The idea was when it is not running about it can be used to play music or video games.

The front and back to the robot are plywood circles that will serve as bases for all the electronics. To make sure the two sides align, we clamped two pieces of plywood together and used coping saw. To smooth out any irregularities, clamped them together again and sanded them repeatedly.

 

We used 2 inch bolts to separate the front and back plates. The is the smallest width that will still be able to hold all of our electronics. After repeated measuring, we drilled the holes while they were still clamped. This assured the bolts would align. Since the bolts are part of the atheistic of the robots it is important to get the positions correct.

We used three nuts and four washers per bolts to acts as spacers. To keep the bolts from loosing we used lock bolts (which can prove difficult to put on) and a pneumatic tubing in between the top and bottom bolts. We have used pneumatic tubing as spacers before in our robot designs and it works great even after years of use.

Once the two plates were secured we cut a strip of plastic to seal the gap. We thought using the side to access the components would be a unique and useful design. Normally, we prefer to have most of the electronics exposed but dingbot has a clean and elegant design. We recommend testing your layout of a sheet of paper first before cutting the holes in the plastic.

After a few trial and error we managed to secure the plastic strip. The first one broke so the second time we heated it with a blow dry to make it more flexible.

Down the center of the robots is a wooden dowel which will server as the spine for the robots.  The legs and arms will both be anchor to the spine.

Here is a bottom view showing the spine.

We are not 100 percent happy with how the plastic strip pops out but we will try applying low heat again and try and mold it into shape.

Although you cannot see them, the design fits a RaspberryPi Nano, two motors, h-bridges, tons of wiring and a battery neatly.

Next step is to design the legs! We are leaning towards a toy robot inspired design.

Happy creating!

Our Apothecary Cabinet

As well as working with technology, the Hip Monsters team also works with magic. This is our handmade apothecary cabinet, which we use to store all of our apothecary supplies and extra bottles.

Please note, this material is provided for informational purposes only and is not a guide on how to create the designs. Please take a look at our disclaimer.

DIY apothecary cabinet with herbs

The mortar and pestle is a very useful tool for making potions. It helps us grind up our herbs into smaller pieces to make smoother potions. Grinding up the ingredients will also help release more of the juices and flavors.

DIY Apothecary Cabinet and herbs

Here are some of our bottles. Whenever we get food in interesting jars, we keep the jars to store herbs and potions in. Many of our herbs are from our herb garden, including lavender, roses, and thyme. DIY Apothecary Cabinet and herbs

We like to use a variety of different styles of jars to give the collection an organic feel. We also like to store some of our potions in paper packages that releases more of the smell. It also makes the apothecary cabinet look more interesting. DIY Apothecary Cabinet and herbs

One of the most important additions to our apothecary cabinet was a wooden beam to go across the shelves. This makes sure that the jars won’t fall out very easily.DIY Apothecary Cabinet and herbs

We used three different layers of stain to try and create a older look. After each layer of stain, we would sand the wood before adding the next one. Another technique to make wood look older is to use candle wax to create circles before adding the next layer of stain. The stain will not stick to the wax, which will make it look like there are stains from bottles on the wood.
DIY Apothecary Cabinet and herbs

For labels we used an unbleached present label then cut them to size. This helps us identify all of our different ingredients and also makes the bottles look more interesting.

Happy Creating!

First Robotics Competition in SF

We had a lot of fun at the First Robotics Competition at St Ignatius College Preparatory in San Francisco CA. We cannot think of a better way to spend the weekend than watching teams of highly skills robotics engineers compete for fame and glory!

Above is a photo the entrance to St Ignatius located in the heart of the Sunset district in San Francisco.

Below is a video showing one set of the robotic competition.

YouTube player

The goal is for your team to finish as many tasks as possible before the time runs out. Each team has three robots: two that are focused on competing tasks and one that tries to disrupt the other team’s robots. The court is divided in two with each team having one side as their home where they perform their tasks. The tasks are placing the tubes in a slot, throwing a ball and lifting themselves up at the end of the round.


Here is a close up of one of the robots, number 6822. It is amazing to see how many different and creative designs the teams come up with. For example, some receive the tubes from feeding machine while others scoop them up from the floor.

Here is another robot, 7667, waiting to be serviced.

Above is a photo of a typical repair station. Like with the robots, each team has their own layout and collection of tools optimized for their robot’s design. We had serious tool envy as we walked through the pit.

While none of our photos have people, the event was crazy crowded. We made sure to exclude people when taking photos, so missed about half of the teams at the events. Below is a sample of some of the teams there.

The Otter Bots.

The Aztechs from Alameda, California.

And team 846 with the absolute coolest pin dispenser ever!

The Breaker Bots.

The Pirate Robolution!

The Bot-Provoking.

Bora Robotics from Türkiye!

Blue Magpies from Taiwan!

Find your inspiration!

Wand Making

At the beginning of the Covid pandemic, we wanted to create magic for ourselves and our friends and hone our wood crafting skills. After much debate, we settled on wand making.

Our yard in the San Francisco, CA has several trees and shrubs that require routine maintenance.  Over the years, we carefully trimmed and stored the best branches for future use. One of our more numerous shrubs is boxwood and we have a large birch tree which both provide great material for wand making.

Please note, this material is provided for informational purposes only and is not a guide on how to create the designs. Please take a look at our disclaimer.

The three essential tools for wand making are:

Selecting the perfect branch can be hard and a lot depends on what sort of wand you are looking for. When selecting a branch to turn into a wand, make sure that it is not too green or too dry. Also, you want the branch’s width to be wider than you want at the start. Spokeshaving takes off more material than you would imagine. Straighter branches are easier, but we prefer ones that curve slightly to make the wand more interesting. Many pieces of wood also have natural handles that works great on the wand.

YouTube player

When cutting the wand make sure to not cut it too short, once you start crafting the ends you may find you need to trim it a bit more.

Wooden cut for making wands

Once you have trimmed the branch it is time to prepare it for spokeshaving.

To prepare for spokeshaving the wands, cure them in a mixture of water, dishwasher soap, and a little oil. Soak them for at least two days depending on how dry the wood was to begin with. If the wood is too dry it can by difficult to charge and split when spokeshaving. After two days of soaking, take the wands out of the solution, wipe them dry and store them in a cool dry place for at least one day to dry out. If your wood starts out very wet, you should not soak the wood and instead leave it to dry out for a bit.

Our technique for wand making involves lots of spokeshaving to shape the wand. The best thing about spokeshaving is it is great for all ages. Kids as young at six can spokeshave simple branches and adults can find it very rewarding after a long day at work.

When spokeshaving make sure not to cut into the wood. This can happen if the blade is not aligned correctly or your use too aggressive of an angle. If you do cut into the wood, we recommend not trying to smooth out the grove with the spokeshave. Instead, use a craving tool to widen the grove before returning to spokeshaving, or use a rasp to smooth it out. When spoke shaving it is best to use as little strength as possible and get into a rhythm to make the tooling as consistent as possible.

YouTube player

Once the wand is in the shape you want then move on to shaping the ends.

YouTube player

After years of practice we find repeated passes with a spokeshave can get the tip to the shape we prefer. You can use a carving knife as well, but with harder wood it can require a lot more force.

Sanding a wooden wand

After you get the shape and look you want move onto sanding. For wands sanding is really important. The wand needs a well-finished, smooth surface or it just will not feel right. Use multiple grades of sandpaper starting with the lowest grade sandpaper and ending with the finest.

Using wood stain on wands

Once the wand has the feel you want start applying the stain. Make sure to apply the stain in an open and well ventilated space. Remember, staining your wands will take multiple days, so you need a place where the wands will be safe and protected from rain or harsh sun. We stain our wands outside under our porch.

Above is a long line of wands after staining. Since it can take weeks to complete one wand we usually have several in the works at a given time. We also sand the wand after staining them because staining can make the wood feel rougher. Sanding can also give the wands an older look.

Waxing a wooden wand

After the last coat of stain has dried, apply beeswax to add another layer of protection and to give it a well-used feel. You want to wand to feel old and magical. This can require multiple coats of beeswax applied over several days depending on the condition of the wood.

Polishing the wands

The last step is to polish the wand using a rag or a bit of leather. We found leather does a great job getting a well-worn, ancient looking patina.

Now your wands are ready for use and harness the magic within!

Happy creating!

Pneumatic Robotic Arm Workshop

This pneumatic robotic arm workshop is design to introduce basic concepts of robotics and making to grade-school students. The design is based on ones used in middle school and high school robotic competitions. We have created a simplified version for one-time workshops with kids of all ages.

Please note, this material is provided for informational purposes only and is not a guide on how to create the designs. Please take a look at our disclaimer.

The two main science concepts are:

  • Leverage: A lever is a simple machine consisting of a bar that pivots on a fixed point (fulcrum). Levers are used to amplify input force. The robotics arm requires placing the syringes in positions that exploit leverage. You can find out more here.
  • Pneumatic:Pneumatic power uses compressed air as an energy source. Basic components of a pneumatic engine are: reservoir, pump, value and cylinder. In this workshop the syringe is the pneumatic engine. Pneumatic power is widely used in robotics and industry. Here is a link for other project ideas. 

Required Supplies:

Each student will require:

  1. x4 syringes
  2. x2 4-inch piece of tubing
  3. 1  4×4 piece of wood
  4. x5 Popsicle sticks
  5. X2 nut and bolts

The photo below is the full-scale model used in high school competitions. It requires 2-3 students to control. One of the Hip Monster sisters built it at a Sacred Heart Robotics Camp in San Francisco, CA.

Here is a side view with the arm down.

The competition involves stacking blocks and the score is based on time it takes to move all the blocks and height of the stack. Controlling the arm is a true team effort with 2-3 students working together to move the arm. The winning design not only requires good engineering but perfect team work. Engineering competitions are ideal ways for kids to develop technical as well as social skills.  Below is a video of the arm in action:

<video of it working>

For our grade school work shop we choose a smaller and simpler design that only required one student to control the robotic arm. You can still have a team competition with two students per robot (one controlling each syringe) if desired.

Below are several views of our simplified design. Instead of zip ties we use rubber bands and tape.

Here is a view from above. This design does not use hot glue and is suited for all ages.

This is another design suited for more advanced students.

Here is a side view showing the placement of the syringe in the middle of the base to provide better range of movement.

In the video below one of the Hip Monster’s sister’s team does a quick build of an arm.

 

YouTube player

Here are the step by step instructions:

  • Drill a hole in the center of the square plywood which will be the base for your robotic arm.
  • Now push a bolt through the hole and secure it using a nut. The bolt will be the support for your arm.
  • Drill a hole on one end of four popsicle sticks.
  • Use the two popsicle sticks placed on either side of the bolt with the holes on the top.
  • Secure using rubber bands making sure to let it pivot.
  • Secure a syringe to a popsicle stick. This popsicle stick provides leverage helping move the arm.
  • Use rubber bands instead of tape or glue. Rubber bands let the mechanism flex as the pump extends pushing the arm.
  • Attach the piping and connect another syringe.
  • Adjust the two syringes so when you depress one the other extends.
  • Attach one end to the popsicle stick using a rubber band.
  • Next secure the other end to the edge of the base using tape.
  • Slow depress the syringe pump your arm will move!
  • Now attach two popsicle sticks to the top of the arm.
  • Secure with a bolt and nut.
  • Secure the syringe pump to the forearm with rubber bands.
  • Now attach the syringe base to the arm using tape.
  • Connect the other syringe.
Now you pneumatic robotic arm is complete!

To improve performance you can turn your pneumatic robot to a hydraulic powered one by just adding water! You can get more information here.

YouTube player
Happy Creating! 

Number 10 Gets A Screen

We have started upgrading all our robot to run the new RobotFreedom.AI framework. For Number Ten, the main missing piece was a screen. Some of our early designs were not built with a screen in mind and adapting the design has taken a few iterations.

Please note, this material is provided for informational purposes only and is not a guide on how to create the designs. Please take a look at our disclaimer.

Here is a list of some materials and components used:

Number Ten was a tricky design to fit a screen on and keep to its original design. After many attempts we settled on using a L-Bracket placed at the front the body to mount the screen.

Now we reassembled the legs onto the body. Number Ten was one of several experiments the Hip Monster’s sister team built to come up with the most unusual way to move a robot. The robot moves forward, left and right by sliding one foot forward. On the bottom of each foot is edge shaped gripers that provide traction when pushed against but slide when pushed forward.

The screen is light enough to only need a few attachments to hold it in place. For added support we used a wire at the top of the screen to keep it secure while moving. Number Ten has never fallen forward so we need less protection for the electronics and screens than some of out other designs.

Our we assemble the various components Number Ten will need. We recommend using a usb hub  for the wireless keyboard dongle. If you have several robots you will want to reuse the keyboard and will need quick access to the dongle. Typically, once we settle on a final layout for the RaspberryPi it is in a secure but difficult to each place making removing the dongle difficult. For people with less than perfect eye sight we recommend using a magnifying glass and bright lights when connection the GPIO pin to the RaspberryPi.

YouTube player

And here is a quick video of Number Ten display screen working. It is a light weight version of our main display better suited for older RaspberryPis.

YouTube player

Happy creating!