Intro to Our Workshop!

In this video Ted from the HipMonster’s team shows our workshop and describes how we train our robots. We have fifteen DIY robots throughout the workshop that listen in on our conversations to learn from us while we work. The robots are completely autonomous and learn on their own. If you are interested in building your own, our website has instructions. These designs are meant for all ages, but even K-12 kids can get started building their own robots.

YouTube player

The robots have their own site, RobotFreedom.com. Watch them they recap the week’s event between themselves.

Please like and subscribe to this channel and follow us BlueSky or Instagram!

Street Art in Taipei

While visiting Taipei we went to the Wanhua district, famous for its amazing street art. It is located in Taipei’s oldest district and is surrounded by history, great food and shopping. While San Francisco, CA has a great collection of murals, we were not prepared for how unique, large, and pristine the street art was in Taipei. In New York and San Francisco there is often layers upon layers of graffiti often obscuring one another in a jumble of imagery. In Taipei, most of the street art was unstructured making you feel like you were walking through a museum rather than an alley. We would see often time see people slowly walking doing an alley as if strolling a museum, pausing at a piece of street art that caught their imagination. Below is a collection of our favorites. 

This is a view of the alley call America Street in the Wanhua district where we found most of the art. It is a fun art focused district to visit.

This four-eyed creature in an Elmo costume. We saw three different versions of this image throughout the city. 

Painted by De_24, this amazing bunny is also frequently seen throughout Taipei. You can check out more of De_24 here


This creative flying cat is painted by Psoman.

This 3-eyed creature is painted by Binzilla

The artist is unknown.

The artist is unknown.

The artist is unknown.

The artist is unknown.The artist is unknown.

The artist is unknown.

Street art made by Alex Face near a park in Taipei.

Fully Autonomous Robots

This video is the first time we were able to record two of our robots talking autonomously. While we were building them, they talked to each other all the time, but capturing on film proved harder than we thought. In this video, both robots are listening to what the other robot says and responding with replies generated by a chat bot based on what they hear.  

 

The robots are completely offline and only use open-source software. They are powered by a RaspberryPi and have a local LangChain chat bot (TinyLlama LLM). They use Vosk for speech recognition and Piper to synthesize speech. Vosk does a fairly good job converting the Piper voice (it did not recognize anything spoken using eSpeech). Piper works well most of the time but can miss a few words and freeze up unexpectedly. The pause mid-video is due to one of the robots briefly not being able to speak due to a buffer overflow issue. 

 

We also have distinct personalities and LLM prompts for all our robots, although in this clip they are hard to distinguish. The only thing noticeable is how  one robot moves its arms much more than the other. 

We have four modes:

  • Puppet: a human controls the robot in real-time
  • Scripted: The robot follows a script with minimal autonomous actions
  • Autonomous: The robot responds to outside stimuli on its won
  • Blended AI: the robot has a script but improvises what it says and how it moves.

Moving forward we will have two types of videos, scripted mode and fully autonomous. The puppet mode will use a human created script to control the robots. The fully autonomous films will be the robots talking on their own “off camera”.  

YouTube player

We are working on releasing the code based used in this video, but it is a bit too rough at this stage. 

Happy creating! 

Maker Faire Bay Area Robot’s View

Thanks to everyone who helped this year’s Maker Faire Bay Area be so special! We are looking forward to seeing everyone next year and are already improving our show. Below is a photo our booth before the event started. It is hard to believe over one thousand people visited us over the course three days!  

Maker Faire Bay Area

Want to see how our autonomous robots experienced Maker Faire Bay Area? Check out the video below, generated based on the stimuli, emotions, and actions of HipMonsters’ two robots over the course of three days at the Maker Faire.

The robots recorded the following sensory data:

💙 Noise: A sudden, loud noise. Represented by the color Blue.

💚 Distance: Motion within 1 foot. Represented by the color Green.

🧡 Movement: Motion within 6 feet. Represented by the color Orange.

💛 Speech: The spoken word “robotics”. Represented by the color Gold.

💗 Touch: Contact on the touch sensor. Represented by the color Pink.

🤖 Frequency of Stimuli: How often or rarely the robots received stimuli. Captured by the Movement of the cube.

🔉 Mood: Happy or overstimulated. Reflected in the choice of Sound.

Turn up the volume of the video! It’s not music you’re hearing, but the robots’ moods given the stimuli.

Since we engaged the Touch sensor at the end of each demo, this means we ran 420 complete demos over 3 days. Our robots have been well socialized!

YouTube player

Happy Creating!

Getting Started with Raspberry PI

Originally, we set up this site to focus on woodcrafting and painting but as our interests grew, we have increasingly used Raspberry Pis to add motion and life into our work. This post will get you started using Raspberry Pi’s in your creations.

Please note, this material is provided for informational purposes only and is not a guide on how to create the designs. Please take a look at our disclaimer.

Why Raspberry Pi?

  1. Powerful computing platform with easy-to-use languages.
  2. Low energy consumption and runs quietly and cooly.
  3. Rich online support and user base.
  4. Has 26 pins built in enabling rapid integration with Internet of Things (IoT) technology.

RaspberryPi 5

Peripherals

Today, most people developed on a laptop or tablet, but Raspberry Pi’s require old fashion peripherals: power cables, screen, keyboard and mouse. You need to setup a physical development environment and make sure you have all the necessary peripherals. Newer Raspberry Pi uses a Micro HDMI port so you will need a converter. We do a lot of coding on the couch so built a makeshift laptop as seen below.  

DIY RaspberryPi Laptop

A side view of our Raspberry Pi laptop.

DIY RaspberryPi Laptop

A front view of our laptop.

A mouse can get some to get use to so we recommend a wireless keyboard (seen above) with a built-in trackpad. One plus is the keyboard + trackpad only uses up one USB port.

The Hard Drive

A Raspberry Pi’s OS is stored on a Micro SD. To start we recommend getting two with at least 64 GB. If you do any images or sound the drive fills up fast. You will also need at least two readers. One USB A for the Raspberry Pi when you transfer code and one for your other machine to build the OS image from.

SD card and reader

Building the OS Image

You can buy Micro SD cards with built in OS. If you do not have a laptop or desktop that is you only real option. You can also build your own OS image using tool provided by Raspberry Pi. You dan download it here: raspberrypi.com/software.

We recommend modifying the advance setting to pre-configure your login and Wi-Fi password.

Booting the Device

Make sure to use the appropriate power supply as specified by RaspBerryPi. Depending on the version, booting can take a while. Once it has completed booting you should see a screen that looks like most standard desktop environments.

Linux Desktop

Raspberry Pi’s OS is ARM version of Linux. If you have used Linux most of the standard tools will be available. If you have only used Windows or OSX the environment should seem very familiar. All the desktop environments follow the same basic principles. If you have never used a desktop environment this is a great place to start!

Configuring Your Environment

The keyboard defaults to UK. If you are not in the UK many of the keys will not work as expected. In Preferences, open up the Mouse and Keyboard Setting then click the Keyboard layout button at the bottom. In the combo box choose the appropriate country.

We also recommend a smaller or not image for the background to use less memory.

Developing Your Next Big Thing!

We started using Scratch as a development tool. If that works for you and makes sense keep using it! Here is a link on how to install it on a Raspberry PI.

We have migrated to mow using Python and C++. To write code we use the Geany Programmer’s Editor. It lacks some features of Visual Studio Code (what we develop on in Windows and OSX) but has a light foot print.

Typically, we write code for a Raspberry Pi on both a MacBook and the Raspberry Pi itself. We do find the MacBook is similar enough environment we do not need to change our code too much. If you look at our code in GitHub we you we often have different logic based on which environment the code is run on. Note: there are some packages that only work on Raspberry Pi such as interfaces to sensors. In these sections of the code, we have non-functioning stub if the platform is OSX.

We transfer code using the SD reader. Both OSX and Linux auto-detect SD cards when attacked but with Linux it can take a bit so be patient. Also, sometimes Linux cannot write to large SD card so try a small on first.

Our next post will dive deeper into the basic of programming Python on a Raspberry Pi. For now, if you have never used Linux or a desktop environment we recommend just browsing the Web using Chromium (the open source base to Chrome) to familiarize yourself.

Happy Creating!

 

 

 

 

 

 

Bell Hopper – Contraption Delta

For our upcoming Maker Faire presentation we wanted to make robotics more approachable. One barrier to robotics is, by its very nature, it lacks a human element. To bridge this robot-human divide, the bell hopper design requires two humans working together to power and control it. This only one goal, ring the bell.

Please note, this material is provided for informational purposes only and is not a guide on how to create the designs. Please take a look at our disclaimer.

Steampunk robot

The bell hopper ended up very similar to the first drawing of the concept, which is rare for us.  For the base board we used one of our small robot rig platforms. We use it to create supports for testing robot movements. It ended up looking so good we kept it for the final design. We always wanted ringing a bell to be the goal of the contraption, but originally did not think of using it as the head. Once we saw the bell with the body we changed the design to have it as the head because they fit so well together.

Steampunk robot

Here is a top view with the bell attached. The head’s weight caused a few engineering issues for us. The body was made of super light aluminum and the bell was heavy brass. To solve this we create a swinging counter balance inspired by the counter balance in Taipei 101.

air switch

For the switch to redirect the air we used a standard manual pneumatic lever. It is the same one we use for testing our robots.

Bike air pump

The power supply is a bicycle air pump painted bronze to look more steampunk.

Steampunk robotHere is the final design of the bell hopper.

It take two people working together to get the bells to ring. Cooperation is key! Come see it and more at this year’s Bay Area Maker Faire.

Happy Creating!

 

Leibniz Calculator- Contraption Gamma

For the upcoming Maker Faire the Hip Monster’s sisters team wanted a challenge. Something that required precision and also aligned well with our theme of education and steampunk artistry. What they choose to do was a true mechanical mind, a computer built with gears, the Leibniz Calculator.

Please note, this material is provided for informational purposes only and is not a guide on how to create the designs. Please take a look at our disclaimer.

DIY Leibniz Calculator

This proved to be our hardest project to date. While videos online had it look simple the precision proved difficult. We first designed a rig composed of separate segments of wood so we could explore different layouts for the gears and rods quickly. Arguable the most critical part, the step drum (the wheel like gear) was completed by the sister team in a few hours which gave us false hope the whole project would be easy.

DIY Leibniz calculator

The step drum shown above is in the center of the device. It was made from a circular piece of wood with nine evenly spaced holes along its edge. In each hole we put screws of different lengths that could be adjusted with bolts to “tune” the device on the fly. At first, we thought this would be a temporary solution but in the end we did not modify it. The device proved to be finicky and our step drum’s ability to be tuned was essential to get it to work.

DIY Leibniz Calculator

Over months of trial and error and rewatching youtube videos endlessly we finally had the Ah-Ha! moment. The rig stayed in the exact same position on our workbench as a parade of other projects were started then finished as it rested, in complete. Then everything just clicked, one sister released that we were thinking two dimensional when the problem was in the third dimension. The the other sister fixed the rig and then the Leibniz Calculator worked like a charm.

DIY Leibniz Calculator

Here is the final design with some added steampunk flourishes. See it in person at this year Bay Area Maker’s Faire. This project only succeed by everyone working together, listening to everyone’s ideas and refusing to get frustrated. In the end it feel more like a piece of art than calculator.

The above video shows the user adding. You use the Leibniz Calculator by first positioning the step drum to the value you want to add, subtract or multiply. Then you rotate the drum. As it spins it engages the counting gear which keeps track of the current value of the computation. The key is, since the step drums spokes are of different lengths when the drum is rotated the counting gear only is turned based on the length of the spokes. You add by rotating the drum clockwise, subtract by counter clockwise and multiply by doing a full rotating the number of time you want to multiply a value by.  For example, if you want to multiply 5 by 4 you set the step drum to 5 and rotate it 4 times.

DIY Leibniz calculator

Above you see the tens dial to the left, showing 2 which is twenty (5X4).

 

Happy Creating!

Number One On Its Own

Number One looks very simple, it’s just a burnt out hair drier with wheels. As out first design we opted for a wheeled robot that followed a more traditional form, but it has been repeatedly updated over the years and now is completely autonomous with a mind of its own, making it one of our most complex robots. Powered by a RaspberryPi, our new Number One is now a Edge AI mobile sensor.

Please note, this material is provided for informational purposes only and is not a guide on how to create the designs. Please take a look at our disclaimer.

DIY wheeled robot

The handle of the blow drier servers as a functional hub for the electronic component. The two batteries (one for the RaspberryPi and one for the motors) are attached to the back to allow for quick replacement. The camera is mounted at the top to provide a good overall view. The display, which is mostly for show, is forward facing. We added “bumpers” to the screen on each counter to help protect it in from falling or bumping in to something. The first screen hit a end table and developed a crack, which convinced us that it needed some armor.

DIY Wheeled Robot RaspberryPi

To protect the range finder, we added wooden bumper. Originally the range sensor had no protection, but after a few good hits we decided a bumper was a good idea. The range finder has proven to be sturdy but the wires to tend to fall off.

DIY Wheeled Robot RaspberryPi

Above is a back view. When we first built Number One it the components were completely attached using electrical tape. While this worked surprisingly well, it did not look good. Most components are now bolted on or attached using leather to help the robot look more aesthetic.

DIY Wheeled Robot RaspberryPi

The RaspberryPi is attached in front for easy access. The USB and other access ports are easily accessed allowing for quick repairs. We use a wireless keyboard to control the RaspberryPi. While the robot is autonomous (it makes decisions on its own) when it first gets power the AI part of the robot does not turn on. The robot can only become active after we execute a command. The original model turned on automatically, but that proved to be a bit of a headache when something went wrong.

Robot layout

The above image is the layout design using software from Fritzing.org. This is a far simpler layout that what we made for Number Two and Number Three. We may add more sensors over time, but to enable a fast response and to reduce power needs we decided to keep the number of sensors to a minimum.  Another difference is we are not using an Arduino to control the movement. For beginners this is a better design to learn with.

Here is Number One in action! Come see it live at this year’s Bay Area Maker Faire! 

You can download the code from our GitHub.

Happy Creating!

Bay Area Maker Faire Update

The HipMonster’s team was quiet online over the summer but working hard in our workshop finishing up our educational presentation on robotics, Robot Freedom. Here is a quick preview of our Robot Freedom which you can see in person at this year’s Bay Area Maker Faire.

Please note, this material is provided for informational purposes only and is not a guide on how to create the designs. Please take a look at our disclaimer.

DIY pneumatic robot with bell.

Here is our pneumatic robot designed to put a ring into robotics! Learn how to power a robot by just using your own strength and coordinating with a friend. See how many times you can ring the bell!

DIY Wheeled robot.

Our DIY robotic car is completely controlled by our emotional AI platform. It uses sensors to learn from its surroundings and go in the right direction. See it navigate the world with emotions and learn how you can build one too.

DIY steampunk Leibniz Calculator

Add, subtract, multiply, and divide using our DIY Leibniz calculator. A steampunk computer that you can build at your home. This calculator can do amazing math with a relatively simple design. Before there was electronics, there was gears!

Steampunk autonomous robot

See the updated Number Three, now a fully autonomous android with emotions. It takes in information from a variety of sensors and processes the information to change its mood. Help it learn to not be afraid of humans!

Steampunk autonomous robot (centaur)

And Number Two (our centaur robot) has gotten updated as well. The AI platform will soon be available on GitHub so you can build your own emotional AI.

Number Three and Number Two also have a hidden feature when you activate a certain sensor.

We are looking forward to seeing all of you at this year’s Maker Faire!

Happy Creating!

Wiring of Number Two and Three

The HipMonster’s sister team decided to push our robotics to the next level. They were dissatisfied with remote controlled robots with no personality or pre-programmed robots who were predictable. What they wanted was a more independent android which could interact with and learn from its environment. While AI would drive this vision, just as important would be sensors and mechanics to enable the robots to come to life.

To start upgrading Number Two and Number Three, we explored different wiring layouts using Fritzing. Fritzing is an open source software program that lets you design and prototype component layouts virtually. This is a great tool for experts and beginners alike and can save you time and money in developing your next electronic project. The images below are exported from Fritzing and show layouts for our improved robots.

Please note, this material is provided for informational purposes only and is not a guide on how to create the designs. Please take a look at our disclaimer.

Fritzing diagram of steampunk robots

The above image is the layout for the Arduino and motors that allow the robots to move, as well as a decorative LED light. The linear actuators are controlled by H-Bridges and the motors by relays. We use a 12 volt battery for power. The Arduino receives commands from a RaspberryPi, which controls the LED light and  brings everything together. Written in C++, the code for the Arduino is based off of our Walker code.

Sensor diagram for steampunk robot

The above image is the layout for the RaspberryPi and the sensors. The signal processing and AI that is written in Python would live on the RaspberryPi. After much experimenting, we found it was best to have most sensors connected directly to the RaspberryPi and dedicate the Arduino completely to movement. Here is a good tutorial on using a motion sensor with a RaspberryPi.

While we wanted a robot with modern AI and technology, we still wanted a steampunk feel. So we decided to use wood for the baseboard, use vintage wiring techniques, and use leather to secure components and wires.

Computer parts for a robot

Once the layouts were finalized and the components acquired for our design, we started exploring different layouts for the baseboard. The baseboard is the most critical piece for our robot’s design. Not only does it secure all the electronics, but also provides structural support for the arm movements. While wiring the board, finding the right layout proved to be more of an art than science. The electronics, power, wiring and the robot’s skeleton all needed to fit together seamlessly, but often one or two components would refuse to play well with the others. The biggest issue was arranging the cabling to minimize stress on the connectors. For example, the HDMI slot needs to point downward or the stress would bend it over time. Number Two and Number Three also needed slightly different boards to work well with their different designs.

Wooden computer baseboard

Above is the final form of the baseboard with the mounting screws attached. Remember to test the sizing on the mounting screws on each component before attaching them to the board. Also make sure to double check your measuring before drilling holes.

Wiring robot components together

Here we are wiring the board for Number Two. We found it was good to test each connection after it was attached to make sure the wires had a clean connection and would not come off. While wiring two or three wires is easy, but after wiring a larger amount, mistakes can be made. If just one wire was in the wrong place or was stripped incorrectly, you could spend hours tracking it down. Thankfully both the Arduino and RaspberryPi are forgiving, but the sensors are not. If you wire a sensor incorrectly it will overheat and burn out.

Here is another view of us wiring the board. Before attaching it to the robots, we tested everyone repeatedly. Even our cat helped in the testing by batting the wires as the motors kicked in.

And here is the Number Three with its new board in action! The color circle indicates which sensor is receiving input. When the robot receives stimuli, it responds by either moving or speaking to try and encourage more stimuli.

Come see Number Three, Number Two, and more at this year’s Bay Area Maker Faire.

Happy Creating!